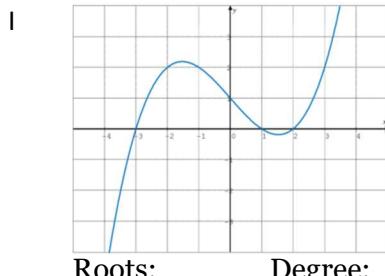


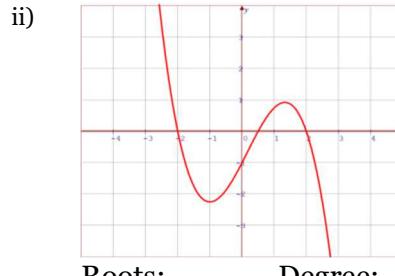
Name: _____

Date: _____

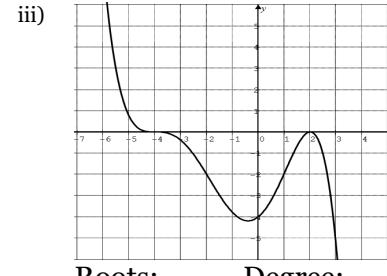
Math 12 Enriched: HW Section 3.1 Graphing Polynomial Functions


1. Indicate which of the following are polynomials. Circle them and state the degree:

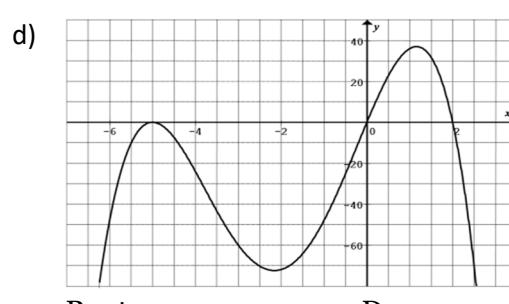
a) $y = \sqrt{3x^2} - 2x + 5$	b) $y = \sqrt{3}x^2 - 4x + 5$	c) $y = 10$	d) $y = 2^x$
e) $y = (x-3)^2$	f) $y = 2x$	g) $\frac{2x^2 - 3x + 5}{10}$	h) $y = \frac{2x^2 - 3x + 5}{2x}$
i) $y = \frac{1}{2x^2 - 3}$	j) $y = \sqrt{3x^4} - 3x$	k) $y = (x-5)^{-1}$	l) $y = \frac{x^2 - 4}{x + 2}$


2. Indicate the degree and the number of roots for the following equations:

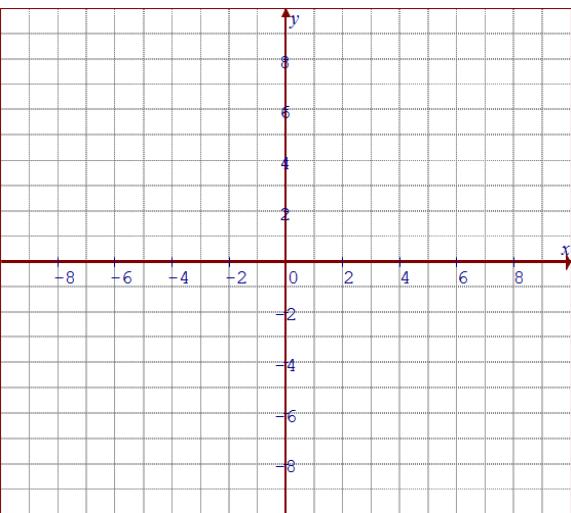
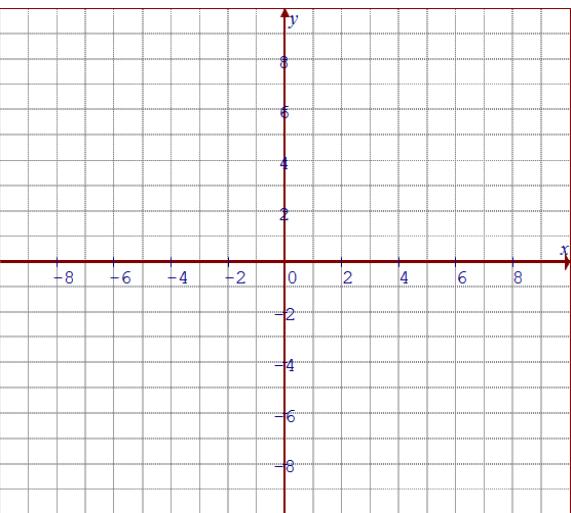
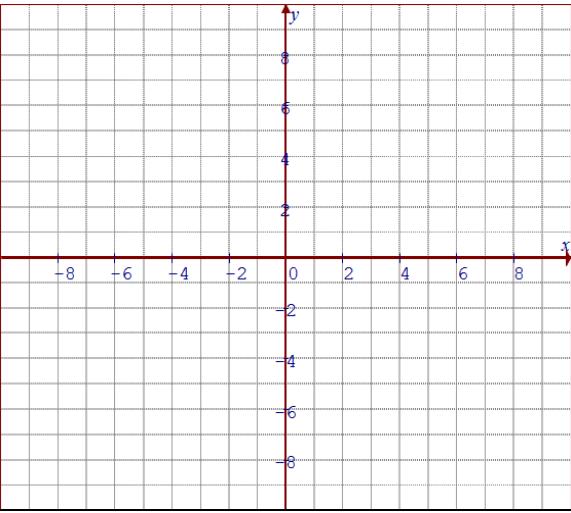
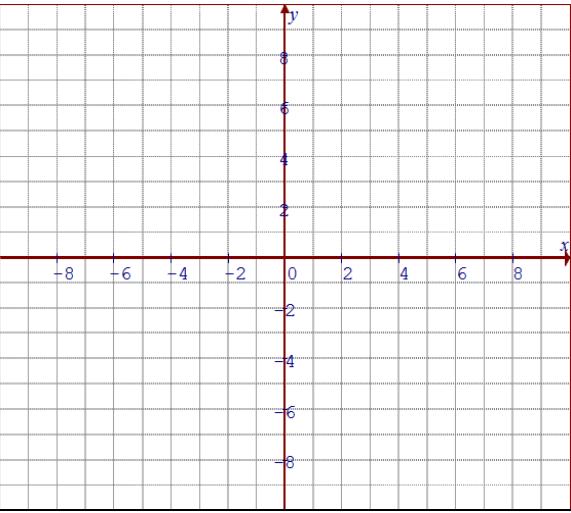
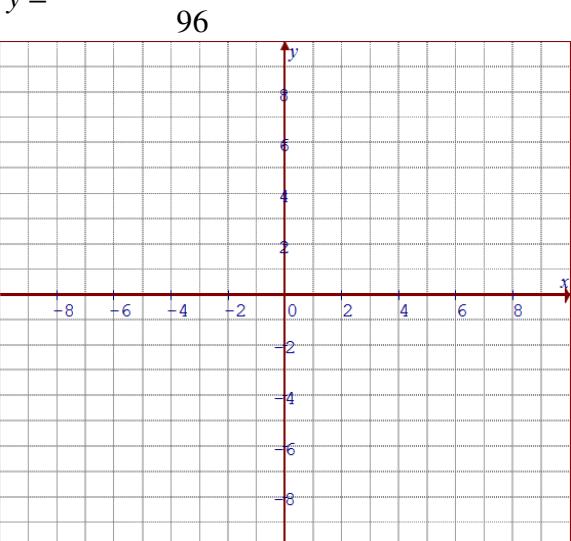
a) $y = (x-3)(x+4)(2x-1)$	b) $y = (x^2 - 4)(x^2 - 1)$	c) $y = -x(x^2 - 3)(x^2 + 1)$
Degree: # of Roots:	Degree: # of Roots:	Degree: # of Roots:
d) $y = (x^2 + 1)(x^4 + 9)$	e) $y = x^4 + 4x^3 + 6x^2 + 4x + 1$	f) $y = x^3 + 2x^2 - 5x - 6$
Degree: # of Roots:	Degree: # of Roots:	Degree: # of Roots:


3. State the roots, y-intercepts, domain, range, and the equation in factored form.


Equation in Factored Form:


Equation in Factored Form

Equation in Factored Form

Equation in Factored Form:

Equation in Factored Form:

4. Given each of the following equations in factored form, graph it on the grid provided.

a)	$y = -\frac{1}{6}(x-2)(2x+3)^2$ 	b)	$y = \frac{1}{2}(x-2)(x+3)(2x+1)^2$
	$y = (x^2 - 1)(x^2 - 4)$ 		$y = (4x^2 - 4x - 15)(0.1x + 0.4)$
	$y = \frac{-1}{81}(x^2 - 6x + 9)(2x+3)^3$ 		$y = \frac{(x^2 + 8x + 16)(x-3)^3}{96}$

5. Indicate whether of the following statements are either true or false

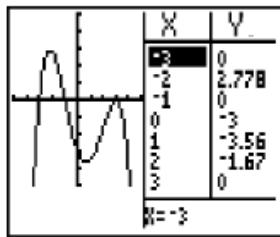
a. The domain of all polynomial functions is all real numbers TRUE / FALSE

b. The range of all polynomial functions is all real numbers TRUE / FALSE

c. The range of $y = Ax^2 - Bx^3 + C$ ($A, B, C \neq 0$) is all real numbers TRUE / FALSE

d. The degree of the following polynomial function is 5

i. $y = x(x^2 - 1)(x^2 + 1)$ TRUE / FALSE


ii. $y = x(2x^2 - 3x + 6x^3 + 3x)$ TRUE / FALSE

iii. $y = (2x - 4)(2x^3 - 4x + 4x^2)(4x - x)$ TRUE / FALSE

iv. $y = (2x - 4)(3 - 3x - 2x^2)(3x - 3x)(5x - 7x)$ TRUE / FALSE

6. The polynomial $P(x) = x^3 + ax^2 + bx + c$ has the property that the mean of its zeros, the product of its zeros, and the sum of its coefficients are all equal. If the y-intercept of the graph of $y = P(x)$ is 2, what is the value of "b"?

7. Given the table of values and graph below, find the equation of the polynomial in factored form:

8. A polynomial function has the following table of values. Find the equation of the polynomial using finite difference

x	-4	-3	-2	-1	0	1	2
y	-21	30.5	35	22.5	11	6.5	3

9. If $y = x^4 + kx^2 + 4$ has 2 pairs of repeated roots only, find all the possible values of "k".

10. Both equations $x^3 - 12x + 16 = 0$ and $x^3 - 12x - 16 = 0$ have a double root and one other root that is different from the double root. Use this information to determine which of the equations below have either

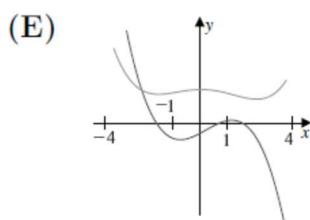
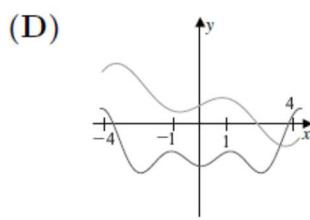
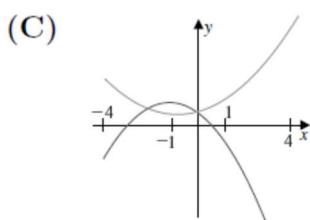
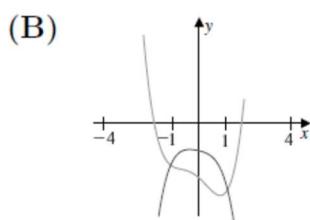
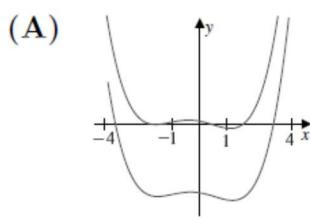
- i) 3 different roots OR ii) only ONE root.

a) $x^3 - 12x + 20 = 0$

b) $x^3 - 12x + 10 = 0$

c) $x^3 - 12x - 20 = 0$

11. Determine the values of "k" for which the equation $x^3 - 12x + k = 0$ will have:






i) 3 different roots

ii) 2 different roots

iii) only one root

12. The graph of the polynomial $P(x) = x^5 + ax^4 + bx^3 + cx^2 + dx + e$ has five distinct x-intercepts, one of which is at $(0,0)$. Which of the following coefficients cannot be zero? a? b? c? d? e?

13. Challenge: The nonzero coefficients of the polynomial $P(x)$ with real coefficient are all replaced by their mean to form another polynomial $Q(x)$. Which of the following graphs below can be the functions $y = P(x)$ and $y = Q(x)$ over the interval $-4 \leq x \leq 4$? amc12 2002 #25

If $p(x)$ is a cubic polynomial with $p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5$, find $p(6)$.

(1977 AHSME #21) For how many values of the coefficient a do the equations have a common real solution?

$$0 = x^2 + ax + 1 \text{ and } 0 = x^2 - x - a$$